10-2. Parabola, Ellipse, Hyperbola
hard

અહી રેખા $L: 2 x+y=k, k\,>\,0$  એ અતિવલય $x^{2}-y^{2}=3 $ નો સ્પર્શક છે . જો રેખા $L$ એ પરવલય $y^{2}=\alpha x$ નો સ્પર્શક હોય તો $\alpha$ ની કિમંત મેળવો.

A

$24$

B

$-12$

C

$-24$

D

$12$

(JEE MAIN-2021)

Solution

Tangent to hyperbola of

Slope $\mathrm{m}=-2$ (given)

$y=-2 x \pm \sqrt{3(3)}$

$\left(y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}\right)$

$\Rightarrow y+2 x=\pm 3 \Rightarrow 2 x+y=3(k\,>\,0)$

For parabola $y^{2}=a x$

$y=m x+\frac{\alpha}{4 m}$

$\Rightarrow y=-2 x+\frac{\alpha}{-8}$

$\Rightarrow \frac{\alpha}{-8}=3$

$\Rightarrow=-24$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.