- Home
- Standard 11
- Physics
3-1.Vectors
easy
$(\vec{M} \times \vec{N})$ અને $(\vec{N} \times \vec{M})$ સદિશો વચ્ચેનો ખૂણો શું થાય?
A
$0$
B
$60$
C
$90$
D
$180$
Solution
(d)
$\vec{M} \times \vec{N} \neq \vec{N} \times \vec{M}$
$\vec{M} \times \vec{N}$ is from $\vec{M}$ to $\vec{N}$
$\vec{N} \times \vec{M}$ is from $\vec{N}$ to $\vec{M}$
This means the two vectors are in opposite direction.
$\text { So, } \vec{M} \times \vec{N} =\vec{N} \times \vec{M}$
$=180^{\circ}$
Standard 11
Physics
Similar Questions
જો $\left| {\vec A } \right|\, = \,2$ અને $\left| {\vec B } \right|\, = \,4$ હોય, તો કોલમ $-II$ માં આપેલા ખૂણાને અનુરૂપ કોલમ $-I$ માં આપેલા યોગ્ય સંબંધ સાથે જોડો.
કોલમ $-I$ | કોલમ $-II$ |
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ | $(i)$ $\theta = \,{30^o}$ |
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ | $(ii)$ $\theta = \,{45^o}$ |
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ | $(iii)$ $\theta = \,{90^o}$ |
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ | $(iv)$ $\theta = \,{0^o}$ |
medium