If $a,b,c$ are distinct real numbers  and $a^3 + b^3 + c^3 = 3abc$ , then the equation $ax^2 + bx + c = 0$ has two roots, out of which one root is

  • A

    $\frac {b}{a}$

  • B

    $\frac {c}{a}$

  • C

    $\frac {-b}{a}$

  • D

    $0$

Similar Questions

Let $S$ be the set of all $\alpha  \in  R$ such that the equation, $cos\,2 x + \alpha  \,sin\, x = 2\alpha  -7$ has a solution. Then $S$ is equal to

  • [JEE MAIN 2019]

The number of distinct real roots of the equation $x^{5}\left(x^{3}-x^{2}-x+1\right)+x\left(3 x^{3}-4 x^{2}-2 x+4\right)-1=0$ is

  • [JEE MAIN 2022]

The number of solution$(s)$ of the equation $ln(lnx)$ = $log_xe$ is -

Let $S=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\right.$ $\left(\sin ^6 \theta+\cos ^6 \theta\right)=0$ has real roots $\}$. If $\alpha$ and $\beta$ be the smallest and largest elements of the set $S$, respectively, then $3\left((\alpha-2)^2+(\beta-1)^2\right)$ equals....................

  • [JEE MAIN 2024]

If $x$ is real, then the value of ${x^2} - 6x + 13$ will not be less than