If $a,b,c$ are distinct real numbers  and $a^3 + b^3 + c^3 = 3abc$ , then the equation $ax^2 + bx + c = 0$ has two roots, out of which one root is

  • A

    $\frac {b}{a}$

  • B

    $\frac {c}{a}$

  • C

    $\frac {-b}{a}$

  • D

    $0$

Similar Questions

If $\alpha , \beta$ and $\gamma$ are the roots of ${x^3} + 8 = 0$, then the equation whose roots are ${\alpha ^2},{\beta ^2}$ and  ${\gamma ^2}$ is

If $x$ is real and satisfies $x + 2 > \sqrt {x + 4} ,$ then

If $a, b, c, d$ and $p$ are distinct real numbers such that $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2)  \le 0$, then

  • [AIEEE 2012]

If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:

  • [JEE MAIN 2017]

The number of real values of $x$ for which the equality $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ holds good is