For what values of $x$, the numbers $\frac{2}{7}, x,-\frac{7}{2}$ are in $G.P.$?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given numbers are $\frac{-2}{7}, x, \frac{-7}{2}$

Common ratio $=\frac{x}{-2 / 7}=\frac{-7 x}{2}$

Also, common ratio $=\frac{-7 / 2}{x}=\frac{-7}{2 x}$

$\therefore \frac{-7 x}{2}=\frac{-7}{2 x}$

$\Rightarrow x^{2}=\frac{-2 \times 7}{-2 \times 7}=1$

$\Rightarrow x=\sqrt{1}$

$\Rightarrow x=\pm 1$

Thus, for $x=\pm 1,$ the given numbers will be in $G.P.$

Similar Questions

If $G$ be the geometric mean of $x$ and $y$, then $\frac{1}{{{G^2} - {x^2}}} + \frac{1}{{{G^2} - {y^2}}} = $

The two geometric means between the number $1$ and $64$ are

If  ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where  $i = \sqrt{-1}),$ then value  of $x_1.x_2.x_3......\infty ,$ is :-

In an increasing geometric progression ol positive terms, the sum of the second and sixth terms is $\frac{70}{3}$ and the product of the third and fifth terms is $49$. Then the sum of the $4^{\text {th }}, 6^{\text {th }}$ and $8^{\text {th }}$ terms is :-

  • [JEE MAIN 2024]

If $\frac{{x + y}}{2},\;y,\;\frac{{y + z}}{2}$ are in $H.P.$, then $x,\;y,\;z$ are in