There are two such pairs of non-zero real valuesof $a$ and $b$ i.e. $(a_1,b_1)$ and $(a_2,b_2)$ for which $2a+b,a-b,a+3b$ are three consecutive terms of a $G.P.$, then the value of $2(a_1b_2 + a_2b_1) + 9a_1a_2$ is-

  • A

    $1$

  • B

    $2$

  • C

    $0$

  • D

    $11$

Similar Questions

Find the sum up to $20$ terms in the geometric progression $0.15,0.015,0.0015........$

If the first and the $n^{\text {th }}$ term of a $G.P.$ are $a$ and $b$, respectively, and if $P$ is the product of $n$ terms, prove that $P^{2}=(a b)^{n}$

If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a $G.P.$ are $x, y$ and $z,$ respectively. Prove that $x,$ $y, z$ are in $G.P.$

Let $a, b, c, d$ and $p$ be any non zero distinct real numbers such that  $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+ cd ) p +\left( b ^{2}+ c ^{2}+ d ^{2}\right)=0 .$ Then

  • [JEE MAIN 2020]

If the sum of an infinite $G.P.$ and the sum of square of its terms is $3$, then the common ratio of the first series is