$x$ के किस मान के लिए संख्याएँ $-\frac{2}{7}, x, \frac{-7}{2}$ गुणोत्तर श्रेणी में हैं ?
The given numbers are $\frac{-2}{7}, x, \frac{-7}{2}$
Common ratio $=\frac{x}{-2 / 7}=\frac{-7 x}{2}$
Also, common ratio $=\frac{-7 / 2}{x}=\frac{-7}{2 x}$
$\therefore \frac{-7 x}{2}=\frac{-7}{2 x}$
$\Rightarrow x^{2}=\frac{-2 \times 7}{-2 \times 7}=1$
$\Rightarrow x=\sqrt{1}$
$\Rightarrow x=\pm 1$
Thus, for $x=\pm 1,$ the given numbers will be in $G.P.$
यदि गुणोत्तर श्रेणी के अनन्त पदों का योग $S$ है जिसका प्रथम पद $a$ है, तब प्रथम $n$ पदों का योगफल है
किसी गुणोत्तर श्रेणी के कुछ पदों का योग $728$ है। यदि सार्वानुपात $3$ तथा अंतिम पद $486$ हो, तो श्रेणी का प्रथम पद होगा
यदि $x,\;y,\;z$ गुणोत्तर श्रेणी में हों व ${a^x} = {b^y} = {c^z}$, तो
यदि $(y - x),\,\,2(y - a)$ तथा $(y - z)$ हरात्मक श्रेणी में हों, तो $x - a,$ $y - a,$ $z - a$ होंगे
माना धनात्मक संख्याएँ $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4$ तथा $\mathrm{a}_5$ एक $G.P.$ में है। माना इसके माध्य तथा प्रसरण क्रमशः $\frac{31}{10}$ तथा $\frac{\mathrm{m}}{\mathrm{n}}$ है, जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ असभाज्य हैं। यदि इन संख्याओं के व्युत्क्रमों का माध्य $\frac{31}{40}$ है तथा $a_3+a_4+a_5=14$ है, तो $m+n$ बराबर है_____________।