$x$ ની કઈ કિંમત માટે $\frac{2}{7}, x,-\frac{7}{2}$ સમગુણોત્તર શ્રેણીમાં થાય ?
The given numbers are $\frac{-2}{7}, x, \frac{-7}{2}$
Common ratio $=\frac{x}{-2 / 7}=\frac{-7 x}{2}$
Also, common ratio $=\frac{-7 / 2}{x}=\frac{-7}{2 x}$
$\therefore \frac{-7 x}{2}=\frac{-7}{2 x}$
$\Rightarrow x^{2}=\frac{-2 \times 7}{-2 \times 7}=1$
$\Rightarrow x=\sqrt{1}$
$\Rightarrow x=\pm 1$
Thus, for $x=\pm 1,$ the given numbers will be in $G.P.$
સમગુણોત્તર શ્રેણીનાં ત્રણ ક્રમિક પદનો ગુણાકાર $216$ છે અને તેનાં બે-બે પદોના ગુણાકારનો સરવાળો $156$ છે, તો આ પદ.... હશે.
$0.5737373...... = $
અનંત સમગુણોત્તર શ્રેણીના પદોનો સરવાળો $3$ અને તેમના વર્ગનો સરવાળો પદ $3$ થાય, તો શ્રેણીનું પ્રથમ પદ અને સામાન્ય ગુણોત્તર કેટલો થાય?
$( - \pi ,\,\,\pi )\,\,$ આંતરલમાં સમીકરણ $\,{{\rm{(8)}}^{{\rm{(1}}\, + \,{\rm{|cosx|}}\, + \,|{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x| }} + {\rm{ |co}}{{\rm{s}}^{\rm{3}}}{\rm{x|}}\, + ......{\rm{)}}}}\,\, = \,\,{4^3}$ નો ઉકેલ ક્યો છે ?