$x$ ની કઈ કિંમત માટે $\frac{2}{7}, x,-\frac{7}{2}$ સમગુણોત્તર શ્રેણીમાં થાય ?
The given numbers are $\frac{-2}{7}, x, \frac{-7}{2}$
Common ratio $=\frac{x}{-2 / 7}=\frac{-7 x}{2}$
Also, common ratio $=\frac{-7 / 2}{x}=\frac{-7}{2 x}$
$\therefore \frac{-7 x}{2}=\frac{-7}{2 x}$
$\Rightarrow x^{2}=\frac{-2 \times 7}{-2 \times 7}=1$
$\Rightarrow x=\sqrt{1}$
$\Rightarrow x=\pm 1$
Thus, for $x=\pm 1,$ the given numbers will be in $G.P.$
ધારોકે $x_{1}, x_{2}, x_{3}, \ldots, x_{20}$ એ સમગુણોતર શ્રેણીમાં છે, જ્યાં $x_{1}=3$ અને સામાન્ય ગુણોત્તર $\frac{1}{2}$ છે. પ્રત્યેક $x_{i}$ ને $\left(x_{i}-i\right)^{2}$ વડે બદલી એક નવી માહિતી રચવામાં આવે છે. જો નવી માહિતીનો મધ્યક $\bar{x}$ હોય, તો $\bar{x}$ કે તેથી નાના તમામ પૂણાંકોમાં સૌથી મોટો પૂણાંક ............ છે.
સમગુણોત્તર શ્રેણી $a + ar + ar^2 + ar^3 +..... \infty$ નો સરવાળો $7$ અને $r$ ની અયુગ્મ ઘાતવાળા પદોનો સરવાળો $'3'$, હોય તો $(a^2 -r^2)$ is કિમત મેળવો .
શ્રેણી $\quad 2,2 \sqrt{2}, 4, \ldots$ નું કેટલામું પદ $128$ થાય ?
જો $a$ અને $b$ વચ્ચે $n$ સમગુણોત્તર મધ્યકો હોય તો તેનો સામાન્ય ગુણોત્તર કેટલો થાય ?
બેંકમાં $Rs.$ $500$, $10 \%$ ના વાર્ષિક ચક્રવૃદ્ધિ વ્યાજે મૂકીએ, તો $10$ વર્ષને અંતે કેટલી રકમ મળે ?