For which value of $x$ ; $cosx > sinx,$ where $x\, \in \,\,\left( {\frac{\pi }{2}\,,\,\frac{{3\pi }}{2}} \right)$
$\left( {\frac{{\pi }}{2}\,,\,\frac{{5\pi }}{4}} \right]$
$\left( {\frac{\pi }{2}\,,\,\pi } \right]$
$\left( {\frac{{5\pi }}{4}\,,\,\frac{{3\pi }}{2}} \right)$
None
Let $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ Then.
If $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, then the general value of $\theta $ is
Number of principal solution of the equation $tan \,3x - tan \,2x - tan\, x = 0$, is
Find the general solution of the equation $\sec ^{2} 2 x=1-\tan 2 x$
$sin^{2n}x + cos^{2n}x$ lies between