The general solution of $\sin x - \cos x = \sqrt 2 $, for any integer $n$ is
$n\pi $
$2n\pi + \frac{{3\pi }}{4}$
$2n\pi $
$(2n + 1)\,\pi $
Find the principal solutions of the equation $\sin x=\frac{\sqrt{3}}{2}$
The number of solutions of the equation $\sin \theta+\cos \theta=\sin 2 \theta$ in the interval $[-\pi, \pi]$ is
Number of solution$(s)$ of the equation $ln(1 + sin^2x) = 1 -ln(5 + x^2)$ is -
Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then
The number of elements in the set $S=\left\{x \in R : 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}\right\}$ is$.....$