Two forces of magnitude $P$ & $Q$ acting at a point have resultant $R$. The resolved part of $R$ in the direction of $P$ is of magnitude $Q$. Angle between the forces is :
When vector $\overrightarrow{ A }=2 \hat{ i }+3 \hat{ j }+2 \hat{ k }$ is subtracted from vector $\vec{B}$, it gives a vector equal to $2 \hat{j}$. Then the magnitude of vector $\vec{B}$ will be:
At what angle must the two forces $(x + y)$ and $(x -y)$ act so that the resultant may be $\sqrt {({x^2} + {y^2})} $
Which of the following quantity/quantities are dependent on the choice of orientation of the co-ordinate axes?
$(a)$ $\vec{a}+\vec{b}$
$(b)$ $3 a_x+2 b_y$
$(c)$ $(\vec{a}+\vec{b}-\vec{c})$