Forces ${F_1}$ and ${F_2}$ act on a point mass in two mutually perpendicular directions. The resultant force on the point mass will be

  • A
    ${F_1} + {F_2}$
  • B
    ${F_1} - {F_2}$
  • C
    $\sqrt {F_1^2 + F_2^2} $
  • D
    $F_1^2 + F_2^2$

Similar Questions

If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then

Add vectors $\overrightarrow{ A }, \overrightarrow{ B }$ and $\overrightarrow{ C }$ each having magnitude of $50$ unit and inclined to the $X$-axis at angles $45^{\circ}, 135^{\circ}$ and $315^{\circ}$ respectively.

Assertion $A$ : If $A, B, C, D$ are four points on a semi-circular arc with centre at $'O'$ such that $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$, then $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$

Reason $R$ : Polygon law of vector addition yields $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$

In the light of the above statements, choose the most appropriate answer from the options given below

  • [JEE MAIN 2021]

Which of the following forces cannot be a resultant of $5\, N$ and $7\, N$ force...........$N$

If $a$ and $b$ are two units vectors inclined at an angle of $60^{\circ}$ to each other, then