Which of the following relations is true for two unit vectors $\hat{ A }$ and $\hat{ B }$ making an angle $\theta$ to each other$?$

  • [JEE MAIN 2022]
  • A

    $|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \tan \frac{\theta}{2}$

  • B

    $|\hat{ A }-\hat{ B }|=|\hat{ A }+\hat{ B }| \tan \frac{\theta}{2}$

  • C

    $|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \cos \frac{\theta}{2}$

  • D

    $|\overrightarrow{ A }-\hat{ B }|=|\overrightarrow{ A }+\hat{ B }| \cos \frac{\theta}{2}$

Similar Questions

Can the resultant of $2$ vectors be zero

  • [IIT 2000]

${d \over {dx}}\left( {{1 \over {{x^4}\sec x}}} \right) = $

Assertion $A$ : If $A, B, C, D$ are four points on a semi-circular arc with centre at $'O'$ such that $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$, then $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$

Reason $R$ : Polygon law of vector addition yields $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$

In the light of the above statements, choose the most appropriate answer from the options given below

  • [JEE MAIN 2021]

The vectors $\vec{A}$ and $\vec{B}$ are such that

$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$

The angle between the two vectors is

  • [AIIMS 2016]

If the resultant of the two forces has a magnitude smaller than the magnitude of larger force, the two forces must be