Which of the following relations is true for two unit vectors $\hat{ A }$ and $\hat{ B }$ making an angle $\theta$ to each other$?$

  • [JEE MAIN 2022]
  • A

    $|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \tan \frac{\theta}{2}$

  • B

    $|\hat{ A }-\hat{ B }|=|\hat{ A }+\hat{ B }| \tan \frac{\theta}{2}$

  • C

    $|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \cos \frac{\theta}{2}$

  • D

    $|\overrightarrow{ A }-\hat{ B }|=|\overrightarrow{ A }+\hat{ B }| \cos \frac{\theta}{2}$

Similar Questions

How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant

$\overrightarrow A \, = \,2\widehat i\, + \,3\widehat j + 4\widehat k$ , $\overrightarrow B \, = \widehat {\,i} - \widehat j + \widehat k$, then find their substraction by algebric method.

Two vectors $\overrightarrow A $and $\overrightarrow B $lie in a plane, another vector $\overrightarrow C $lies outside this plane, then the resultant of these three vectors i.e.,$\overrightarrow A + \overrightarrow B + \overrightarrow C $

Give the names of two methods for vector addition. Write the law of parallogram for vector addition.

Two forces, each of magnitude $F$ have a resultant of the same magnitude $F$. The angle between the two forces is....... $^o$