समान परिमाण $F$ वाले दो बल एक वस्तु पर क्रिया करते हैं और परिणामी $\frac{F}{3}$ है। इन दोनों बलों के बीच का कोण होगा
किसी वस्तु पर दो बल ${F_1}$ तथा ${F_2}$ कार्य करते हैं। एक बल दूसरे का दोगुना है तथा इनका परिणामी बड़े बल के बराबर है तो दोनों बलों के बीच कोण है
दो बल ${F_1} = 1\,N$ तथा ${F_2} = 2\,N$ क्रमश: $x = 0$ तथा $y = 0$ रेखाओं के अनुदिश कार्यरत हैं तो बलों का परिणामी होगा
दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।
किसी सदिश $\overrightarrow{ A }$ को $\Delta \theta$ रेडियन $(\Delta \theta<<1)$ घुमा देने पर एक नया सदिश $\overrightarrow{ B }$ प्राप्त होता है। इस अवस्था में $\overrightarrow{ B }-\overrightarrow{ A } \mid$ होगा :