ચાર વ્યક્તિઓ ટાર્ગેટને તાકી શકે તેની સંભાવના અનુક્રમે $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ અને $\frac {1}{8}$ છે. જો બધા સ્વતંત્ર રીતે ટાર્ગેટને તકવાનો પ્રયત્ન કરે છે તો ટાર્ગેટ ને તાકી શકાય તેની સંભાવના મેળવો.
$\frac{{25}}{{32}}$
$\frac{{25}}{{192}}$
$\frac{{7}}{{32}}$
$\frac{{1}}{{192}}$
$P(A)=\frac{3}{5}$ અને $P(B)=\frac{1}{5}$ આપેલ છે. જો $A$ અને $B$ પરસ્પર નિવારક ઘટનાઓ હોય તો $P(A$ અથવા $B$) શોધો.
ધારો કે બે ઘટના $A$ અને $B$ આપેલ છે કે જેથી બે માંથી માત્ર એક્જ બને તેની સંભાવના $\frac{2}{5}$ હોય અને $A$ અથવા $B$ ઉદભવે તેની સંભાવના $\frac{1}{2}$ હોય તો બંને એક સાથે ઉદભવે તેની સંભાવના મેળવો.
$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો સવાલનો ઉકેલ મળે
એક ખોખામાં $10$ કાળા રંગના અને $8$ લાલ રંગના દડા છે. તે ખોખામાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે. તેમાંનો એક દડો કાળા રંગનો અને અન્ય લાલ રંગનો હોય તેની સંભાવના શોધો.
એક પાસાને ફેંકવામાં આવે છે. જો ઘટના $E$ એ પાસા પર મળતી સંખ્યા $3$ નો ગુણિત છે' અને ઘટના -$F$ ‘પાસા પર મળતી સંખ્યા યુગ્મ છે', તો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ છે કે નહિ તે નક્કી કરો.