જો $A$ અને $B$ એ ઘટના છે,તો બંને માંથી કોઇ એકજ ઉદ્રભવે તેની સંભાવના મેળવો.
$P\,(A) + P\,(B) - P\,(A \cap B)$
$P\,(A) + P\,(B) - 2P\,(A \cap B)$
$P\,(A) + P\,(B) - P\,(A \cup B)$
$P\,(A) + P\,(B) - 2P\,(A \cup B)$
જો $A$ અને $B$ કોઈ ઘટના હોય તો $P (A \,\,\cup \,\, B) = …….$
વિદ્યુત યંત્રના ભાગોનું જોડાણ બે ઉપરચનાઓ $A$ અને $B$ ધરાવે છે. અગાઉની ચકાસવાની કાર્યપ્રણાલી પરથી નીચેની સંભાવનાઓ જ્ઞાત છે તેમ ધારેલ છે :
$P(A$ નિષ્ફળ જાય) $= 0.2$
$P$ (ફક્ત $B$ નિષ્ફળ જાય) $= 0.15$
$P(A $ અને $B$ નિષ્ફળ જાય) $= 0.15$
નીચેની સંભાવનાઓ શોધો :
$P(A $ એકલી નિષ્ફળ જાય)
નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.4.$
$P(A \cup B)$ શોધો
જો ઘટનાઓ $X$ અને $Y$ છે કે જેથી $P(X \cup Y=P)\,(X \cap Y).$
વિધાન $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$
વિધાન $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$
બે ઘટનાઓ $A$ અને $B$ ની સંભાવનાઓ અનુક્રમે $0.25$ અને $0.50$ છે. $A$ અને $B$ બંને એક સાથે થવાની સંભાવના $0.14$ છે. તો $A$ અને $B$ માંથી એક પણ ઘટના ન બને તેની સંભાવના કેટલી?