निम्न प्रदर्शित वक्रों में से कौन सा वक्र किसी श्यान द्रव के लंबे स्तंभ में उध्र्वाधरत: नीचे गिरते हुए छोटे आकार के गोले के वेग के समय के साथ परिवर्तन को पूर्णतया दर्शता है
बराबर त्रिज्या वाले दो गोलों $P$ तथा $Q$ के घनत्व क्रमशः $\rho_1$ तथा $\rho_2$ है। गोलों को एक द्रव्यमान रहित डोरी से जोड़कर $\sigma_1$ एव $\sigma_2$ घनत्व वाले तथा $\eta_1$ एवं $\eta_2$ श्यानता गुणाकों वाले द्रवों $L_1$ एवं $L_2$ में डाला जाता है। साम्यावस्था में गोला $P$ द्रव $L_1$ में तथा $Q$ द्रव $L_2$ में तैरता है तथा डोरी तनी रहती है (चित्र देखें)। यदि गोले $P$ को अलग से $L_2$ में डालने पर उसका सीमांत वेग $\bar{V}_P$ होता है और गोले $Q$ का $L _1$ में अलग से डालने पर सीमांत वेग $\bar{V}_Q$ है, तव
$(A)$ $\frac{\left|\overrightarrow{ V }_{ P }\right|}{\left|\overrightarrow{ V }_{ Q }\right|}=\frac{\eta_1}{\eta_2}$ $(B)$ $\frac{\left|\overrightarrow{ V }_{ P }\right|}{\left|\overrightarrow{ V }_{ Q }\right|}=\frac{\eta_2}{\eta_1}$
$(C)$ $\overrightarrow{ V }_{ P } \cdot \overrightarrow{ V }_{ Q } > 0$ $(D)$ $\overrightarrow{ V }_{ P } \cdot \overrightarrow{ V }_{ Q } < 0$
नदी में जल धारा का वेग
किसी श्यान द्रव में काफी ऊँचाई से एक गोलाकार ठोस गेंद गिर रही है। उसके वेग में समय के साथ परिवर्तन का सही प्रदर्शन करने वाला वक्र है
एक गेंद जिसकी त्रिज्या $r$ व घनत्व है, गुरुत्व के अधीन मुक्त रूप से गिर रही है। $h $ ऊँचाई से गिरने के पश्चात् वह जल में प्रवेश करती है। जल में प्रवेश करने के पश्चात् भी उसकी चाल नियत बनी रहती है। जल की श्यानता हो, तो h का मान होगा
'$r$' त्रिज्या की छोटी गोलाकार गेंद नगण्य घनत्व के एक श्यान माध्यम में गिरती है। उसका सीमान्त वेग ' $v$ ' है। समान द्रव्यमान तथा $2 r$ त्रिज्या की दूसरी गोली समान श्यान माध्यम में गिरती है तो उसका सीमान्त वेग होगा: