9-1.Fluid Mechanics
medium

समान द्रव्यमान के दो लघु गोलीय धातु गैदें $1\;mm$ तथा $2 \;mm$ त्रिज्या तथा $\rho_1$ व $\rho_2\; (\rho_1 = 8\rho_2)$ घनत्व के पदार्थों की बनी हुई है। ये एक श्यान माध्यम में ऊर्ध्वाधर गिरती है जिनका श्यानता गुणांक बराबर है तथा जिसका घनत्व $0.1\rho_2$ है। इनके सीमांत वेगो का अनुपात होगा

A

$\frac{79}{72}$

B

$\frac{19}{36}$

C

$\frac{39}{72}$

D

$\frac{79}{36}$

(NEET-2019)

Solution

$v_{T}=\frac{2 r^{2}(\sigma-\rho) g}{9 \eta}$

$\frac{v_{1}}{v_{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2} \frac{\left(\sigma_{1}-\rho\right)}{\left(\sigma_{2}-\rho\right)}$$=\left(\frac{1}{2}\right)^{2}\left(\frac{8 \rho_{2}-0.1 \rho_{2}}{\rho_{2}-0.1 \rho_{2}}\right)$$=\frac{79}{36}$

Standard 11
Physics

Similar Questions

टेबल टेनिस की एक गेंद की त्रिज्या $(3 / 2) \times 10^{-2} m$ तथा द्रव्यमान $(22 / 7) \times 10^{-3} kg$ है। इसे एक तरण ताल (swimming pool) में धीरे-धीरे पानी की सतह से गहराई $d=0.7 m$ तक ले जाकर स्थिर अवस्था से छोड़ते हैं। यह गेंद, बिना पानी से भीगे हुए, पानी की सतह से चाल $v$ से बाहर आती है और ऊंचाई $H$ तक जाती है। निम्न में से कौन सा/से विकल्प सही है(हैं)?

[दिया है: $\pi=22 / 7, g=10 ms ^{-2}$, पानी का घनत्व $=1 \times 10^3 kg m ^{-3}$,

पानी की श्यानता (viscosity) $=1 \times 10^{-3} Pa – s$ ]

$(A)$ गेंद को गहराई $d$ तक ले जाने में किया गया कार्य $0.077 \ J$ है।

$(B)$ यदि पानी में लगे श्यान बल को नगण्य मानें तो चाल $v=7 m / s$ है।

$(C)$ यदि पानी में लगे श्यान बल को नगण्य मानें तो ऊँचाई $H=1.4 \ m$ है।

$(D)$ पानी में, श्यान बल को छोड़कर, लगे कुल बल के परिमाण का अधिकतम श्यान बल के सापेक्ष अनुपात 500/9 है।

normal
(IIT-2024)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.