એક શાળાના ધોરણ $XI$ નાં $40 \%$ વિદ્યાર્થી ગણિત ભણે છે અને $30 \%$ જીવવિજ્ઞાન ભણે છે. વર્ગના $10 \%$ વિદ્યાર્થી ગણિત અને જીવવિજ્ઞાન બંને ભણે છે. આ ધોરણનો એક વિદ્યાર્થી યાદચ્છિક રીતે પસંદ કરવામાં આવે છે, તો આ વિદ્યાર્થી ગણિત અથવા જીવવિજ્ઞાન ભણતો હોય તેની સંભાવના શોધો.
Let $A$ be the event in which the selected student studies Mathematics and $B$ be the event in which the selected student studies Biology.
Accordingly, $P ( A )=40 \%=\frac{40}{100}=\frac{2}{5}$
$P(B)=30 \%=\frac{30}{100}=\frac{3}{10}$
$P ( A$ and $B )=10 \%=\frac{10}{100}=\frac{1}{10}$
We know that $P ( A$ and $B )= P ( A )+ P ( B )- P ( A $ and $B )$
$\therefore P(A $ or $ B)=\frac{2}{5}+\frac{3}{10}+\frac{1}{10}=\frac{6}{10}=0.6$
Thus, the probability that the selected student will be studying Mathematics or Biology is $0.6$.
જો $A$ અને $B$ બે ઘટનાઓ હોય, તો નીચેના પૈકી કઈ સાચી નથી.
$A$ અને $B$ બે ઘટનાઓ એવા પ્રકારની છે કે $P(A) = 0.54, P(B) = 0.69$ અને$P(A \cap B)=0.35$ $P \left( A ^{\prime} \cap B ^{\prime}\right)$ શોધો.
એક બોક્સમાં $3$ સફેદ અને $2$ લાલ દડા છે. પહેલાં એક દડો બહાર કાઢવામાં આવે છે અને તેને બદલ્યા સિવાય બીજો દડો બહાર કઢાય છે. તો બીજો દડો લાલ હોવાની સંભાવના કેટલી?
$A$ એ સત્ય બોલો તેની સંભાવના $\frac{4}{5}$ છે અને $B$ એ સત્ય બોલે તેની સંભાવના $\frac{3}{4}$ છે,તો એક સત્ય વિધાન વિશે બંને ને બોલવાનુ કહેતા બંનેમાં વિરોધાભાસ થાય તેની સંભાવના મેળવો.
જો $A, B, C$ અનુક્રમે $5$ માંથી $4$ વાર, $4$ માંથી $3$ વાર અને $3$ માંથી $2$ વાર નિશાન સાધી શકે છે તો, તે પૈકી ચોક્કસ બે નિશાન સાધી શકે તેવી સંભાવના કેટલી થાય ?