एक संस्था के कर्मचारियों में से $5$ कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है
क्रम. | नाम | लिंग | आयु ( वर्षो में ) |
$1.$ | हरीश | $M$ | $30$ |
$2.$ | रोहन | $M$ | $33$ |
$3.$ | शीतल | $F$ | $46$ |
$4.$ | ऐलिस | $F$ | $28$ |
$5.$ | सलीम | $M$ | $41$ |
इस समूह से प्रवक्ता पद के लिए यादृच्छ्या एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या $35$ वर्ष से अधिक आयु का होने की क्या प्रायिकता है ?
Let $E$ be the event in which the spokesperson will be a male and $F$ be the event in which the spokesperson will be over $35$ years of age.
Accordingly, $P ( E )=\frac{3}{5}$ and $P ( F )=\frac{2}{5}$
since there is only one male who is over $35$ years of age,
$P ( E \cap F)=\frac{1}{5}$
We know that $P ( E \cup F)= P ( E )+ P ( F )- P ( E \cap F )$
$\therefore P ( E \cup F )=\frac{3}{5}+\frac{2}{5}-\frac{1}{5}=\frac{4}{5}$
Thus, the probability that the spokesperson will either be a male or over $35$ years of age is $\frac{4}{5}$.
मान लें $E$ तथा $F$ दो घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{3}{5}, P ( F )=\frac{3}{10}$ और $P ( E \cap F )=\frac{1}{5}$ तब क्या $E$ तथा $F$ स्वतंत्र हैं?
$A$ व $B$ के एक वर्ष में मरने की प्रायिकतायें क्रमश: $p$ व $q$ हैं तो उनमें से केवल एक वर्ष के अन्त में जिन्दा रहे, इसकी प्रायिकता है
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( B-$ नहीं)
यदि तीन विद्यार्थियों द्वारा प्रश्न को हल करने के प्रतिकूल संयोगानुपात क्रमश: $2 : 1 , 5:2$ व $5:3$ है, तब प्रश्न एक ही विद्याथि द्वारा हल करने की प्रायिकता है
यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ परस्पर अपवर्जी हों, तो $x = $