The set of values of $'a'$ for which the inequality ${x^2} - (a + 2)x - (a + 3) < 0$ is satisfied by atleast one positive real $x$ , is
$\left[ { - 3,\infty } \right)$
$\left( { - 3,\infty } \right)$
$\left( { - \infty , - 3} \right)$
$\left( { - \infty , 3} \right]$
Let $A=\{1,2,3,4,5\}$ and $B=\{1,2,3,4,5,6\}$. Then the number of functions $f: A \rightarrow B$ satisfying $f(1)+f(2)=f(4)-1$ is equal to
The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-
Let $A=\{(x, y): 2 x+3 y=23, x, y \in N\}$ and $B=\{x:(x, y) \in A\}$. Then the number of one-one functions from $\mathrm{A}$ to $\mathrm{B}$ is equal to ................
Show that none of the operations given above has identity.
If $f$ is an even function defined on the interval $(-5, 5),$ then four real values of $x$ satisfying the equation $f(x) = f\left( {\frac{{x + 1}}{{x + 2}}} \right)$ are