1.Relation and Function
normal

The set of values of $'a'$ for which the inequality ${x^2} - (a + 2)x - (a + 3) < 0$ is satisfied by atleast one positive real $x$ , is

A

$\left[ { - 3,\infty } \right)$

B

$\left( { - 3,\infty } \right)$

C

$\left( { - \infty , - 3} \right)$

D

$\left( { - \infty ,  3} \right]$

Solution

$f(x)=x^{2}-(a+2) x-(a+3)$

for $f(\mathrm{x})$ to be negative for atleast one positive

$\mathrm{x}$, following cases may be there $-$

Case$-I$ $\quad f(0)<0$

$-(a+3)<0 \Rightarrow a+3>0$

$\Rightarrow a>-3$

Case$-II$ $\quad(1) D>0$

$(a+2)^{2}+4(a+3)>0$

$a^{2}+8 a+16>0$

$\Rightarrow(a+4)^{2}>0$

$\Rightarrow a \in R-\{-4\}$

$(2)$ $f(0) \geq 0$

$-(a+3) \geq 0$

$\Rightarrow a+3 \leq 0$

$\Rightarrow a \leq-3$

$(3)$ $-\frac{b}{2 a}>0 \Rightarrow a>-2$

intersection of $(1),(2) \&(3)$ is a $\in \phi$

$\therefore a \in(-3, \infty)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.