If $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, then $(f + g)\left( {\frac{\pi }{3}} \right) = $
$1$
$\frac{{2\sqrt 3 + 1}}{4}$
$\sqrt 3 + \frac{1}{4}$
None of these
The range of function $f : R \rightarrow R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ is
The domain of ${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ is
Let $f(x)$ be a quadratic polynomial such that $f(-2)$ $+f(3)=0$. If one of the roots of $f(x)=0$ is $-1$, then the sum of the roots of $f(x)=0$ is equal to
Domain of function $f(x) = log|5{x} - 2x|$ is $x \in R - A$, then $n(A)$ is (where $\{.\}$ denotes fractional part function)
The range of the function $f(x) = \frac{{x + 2}}{{|x + 2|}}$ is