જે સ્વવાચક અને સંમિત હોય પરંતુ પરંપરિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A=\{4,6,8\}$

Define a relation $R$ on $A$ as

$A=\{(4,4),\,(6,6),\,(8,8),\,(4,6),\,(6,4),\,(6,8),\,(8,6)\}$

Relation $R$ is reflexive since for every $a \in A,\,(a, \,a) \in R$

i.e., $\{(4,4),(6,6),(8,8)\}\in R$

Relation $R$ is symmetric since $(a, \,b) \in R \Rightarrow(b, a) \in R$ for all $a, \,b \in R$

Relation $R$ is not transitive since $(4,6),(6,8) \in R,$ but $(4,8)\notin R$

Hence, relation $R$ is reflexive and symmetric but not transitive.

Similar Questions

ગણ $\{1,2,3,4,5,6\}$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b): b=a+1\}$ એ સ્વવાચક, સંમિત કે પરંપરિત સંબંધ છે કે નહિ તે ચકાસો.

જો $A = \{1, 2, 3, 4\}$ અને $R$ એ $A$ પરનો સંબંધ છે કે જેથી $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$.તો $R$ એ . .  .

જો $r$ એ $R$ થી $R$ પરનો સંબંધ વ્યાખ્યાયિત હોય $r$ = $\left\{ {\left( {x,y} \right)\,|\,x,\,y\, \in \,R} \right.$ અને $xy$ એ અસમેય સંખ્યા  છે $\}$ , હોય તો સંબંધ $r$ એ 

જો $R$ એ $n$ ઘટક ધરાવતા શાન્ત ગણ $A$ પરનો સ્વવાચક સંબંધ છે અને $R$ માં $m$ કષ્મયુકત જોડ હોય તો  . . . 

સાબિત કરો કે તમામ બહુકોણના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R=\left\{\left(P_{1}, P_{2}\right):\right.$ $P _{1}$ અને $P _{2}$ ની બાજુઓની સંખ્યા સમાન છે. $\}$ એ સામ્ય સંબંધ છે. $3, 4$ અને $5$ લંબાઈની બાજુઓવાળા કાટકોણ ત્રિકોણ સાથે સંબંધ $R$ ધરાવતા ગણ $A$ ના તમામ ઘટકોનો ગણ શું મળશે ?