જો $I$ એ ધન પુર્ણાક સંખ્યાઓનો ગણ છે અને $R$ એ સંબંધ ગણ $I$ પર વ્યાખિયાયિત છે $R =\left\{ {\left( {a,b} \right) \in I \times I\,|\,\,{{\log }_2}\left( {\frac{a}{b}} \right)} \right.$ એ અઋણ પુર્ણાક છે.$\}$, હોય તો $R$ એ ..
માત્ર સ્વવાચક છે
સ્વવાચક અને પરંપરિત છે
માત્ર સમિત છે
સામ્ય સંબંધ છે
ગણ $A=\{1,2,3\} $ લો. ઘટક $(1, 2)$ અને $(1, 3)$ સમાવતા હોય અને સ્વવાચક અને સંમિત હોય, પરંતુ પરંપરિત ન હોય તેવા સંબંધોની સંખ્યા ........ છે.
ધારો કે $R$ એ ، જો $2 a+3 b$ એ $5$ નો ગુણિત હોય, તો $a R b, a, b \in N$ ' મુજબ વ્યાખ્યાયિત $N$ પરનો સંબંધ છે. તો $R$ એ
જો $A = \{1, 2, 3, 4\}$ અને $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ એ ગણ $A$ પરનો સંબંધ છે તો $R$ એ . . ..
જો $r$ એ $R$ થી $R$ પરનો સંબંધ વ્યાખ્યાયિત હોય $r$ = $\left\{ {\left( {x,y} \right)\,|\,x,\,y\, \in \,R} \right.$ અને $xy$ એ અસમેય સંખ્યા છે $\}$ , હોય તો સંબંધ $r$ એ
જો $R\,= \{(x,y) : x,y \in N\, and\, x^2 -4xy +3y^2\, =0\}$, કે જ્યાં $N$ એ પ્રાકૃતિક સંખ્યાનો ગણ હોય તો $R$ એ .. .