Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $\mathrm{R}$ in the set $\mathrm{Z}$ of all integers defined as $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}-\mathrm{y}$ is an integer $\}$
$\mathrm{R} =\{( \mathrm{x} , \mathrm{y} )\,:\, \mathrm{x} - \mathrm{y}$ is an integer $\}$
Now, for every $\mathrm{x} \in \mathrm{Z} ,( \mathrm{x} ,\,\mathrm{x} ) \in \mathrm{R}$ as $\mathrm{x} - \mathrm{x} =0$ is an integer.
$\therefore $ $\mathrm{R}$ is reflexive.
Now, for every $\mathrm{x} ,\, \mathrm{y} \in \mathrm{Z} ,$ if $( \mathrm{x} ,\,\mathrm{ y} ) \in \mathrm{R} ,$ then $\mathrm{x} - \mathrm{y}$ is an integer.
$\Rightarrow-(\mathrm{x}-\mathrm{y})$ is also an integer.
$\Rightarrow(\mathrm{y}-\mathrm{x})$ is an integer.
$\therefore $ $( \mathrm{y} ,\, \mathrm{x} ) \in \mathrm{R}$
$\therefore \mathrm{R}$ is symmetric.
Now, Let $( \mathrm{x} , \,\mathrm{y} )$ and $( \mathrm{y} ,\, \mathrm{z} ) \in \mathrm{R} ,$ where $\mathrm{x} ,\, \mathrm{y} ,\, \mathrm{z} \in \mathrm{Z}$
$\Rightarrow $ $(\mathrm{x}-\mathrm{y})$ and $(\mathrm{y}-\mathrm{z})$ are integers.
$\Rightarrow $ $\mathrm{x}-\mathrm{z}=(\mathrm{x}-\mathrm{y})+(\mathrm{y}-\mathrm{z})$ is an integer.
$\therefore$ $( \mathrm{x} ,\, \mathrm{z} ) \in \mathrm{R}$
$\therefore $ $\mathrm{R}$ is transitive.
Hence, $\mathrm{R}$ is reflexive, symmetric, and transitive.
Let $A=\{1,3,4,6,9\}$ and $B=\{2,4,5,8,10\}$. Let $R$ be a relation defined on $A \times B$ such that $R =$ $\left\{\left(\left(a_1, b_1\right),\left(a_2, b_2\right)\right): a_1 \leq b_2\right.$ and $\left.b_1 \leq a_2\right\}$. Then the number of elements in the set $R$ is
Show that the relation $R$ in $R$ defined as $R =\{(a, b): a \leq b\},$ is reflexive and transitive but not symmetric.
The relation $R =\{( a , b ): \operatorname{gcd}( a , b )=1,2 a \neq b , a , b \in Z \}$ is:
Let $R$ be the relation defined in the set $A=\{1,2,3,4,5,6,7\}$ by $R =\{(a, b):$ both $a$ and $b$ are either odd or even $\} .$ Show that $R$ is an equivalence relation. Further, show that all the elements of the subset $ \{1,3,5,7\}$ are related to each other and all the elements of the subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\} .$
Let $R_{1}$ and $R_{2}$ be relations on the set $\{1,2, \ldots, 50\}$ such that $R _{1}=\left\{\left( p , p ^{ n }\right)\right.$ : $p$ is a prime and $n \geq 0$ is an integer $\}$ and $R _{2}=\left\{\left( p , p ^{ n }\right)\right.$ : $p$ is a prime and $n =0$ or $1\}$. Then, the number of elements in $R _{1}- R _{2}$ is........