ऐसे संबंध का उदाहरण दीजिए, जो स्वतुल्य तथा संक्रामक हो किंतु सममित न हो।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Define a relation $R$ in $R$ as $:$

$\left.R=\{a, b): a^{3} \geq b^{3}\right\}$

Clearly $(a,a)\in R$                    as $a^{3}=a^{3}$

$\therefore R$ is reflexive.

Now, $(2,1)\in R$                $[$ as  $2^{3} \geq 1^{3}]$

But, $(1,2)\notin R$               $[$ as  $1^{3} < 2^{3}]$

$\therefore R$ is not symmetric.

Now, Let $(a, b),\,(b, c) \in R$

$\Rightarrow a^{3} \geq b^{3}$ and $b^{3} \geq c^{3}$

$\Rightarrow a^{3} \geq c^{3}$

$\Rightarrow(a, c) \in R$

$\therefore R$ is transitive.

Hence, relation $R$ is reflexive and transitive but not symmetric.

Similar Questions

माना $n $ एक निश्चित धनात्मक पूर्णांक है, संबंध $R$  पूर्णाकों के समुच्चय $Z$ पर $aRb \Leftrightarrow n|a - b$$| $ से परिभाषित है, तब $R $ है

यदि समुच्चय $\{1,2,3,4\}$ पर सबसे छोटा तुल्यता संबंध $\mathrm{R}$ इस प्रकार है कि $\{(1,2),(1,3)\} \subset \mathrm{R}$ है, तो $\mathrm{R}$ में अवयवों की संख्या है...............

  • [JEE MAIN 2024]

यदि $R _{1}$ तथा $R _{2}$ समुच्चय $A$ में तुल्यता संबंध हैं, तो सिद्ध कीजिए कि $R _{1} \cap R _{2}$ भी एक तुल्यता संबंध है।

सिद्ध कीजिए कि समुच्चय $\{1,2,3\}$ में $R =\{(1,1),(2,2), (3,3),(1,2),(2,3)\}$ द्वारा प्रद्त संबंध स्वतुल्य है, परंतु न तो सममित है और न संक्रामक है।

$R$ एक संबंध $‘<’ A$ से $B$ में है, जहाँ $ A = \{1,2, 3, 4\}$ तथा $B= \{1, 3, 5\}$ अर्थात् $(a,\,b) \in R \Leftrightarrow a < b,$ तब $Ro{R^{ - 1}}$ है