Let $R = \{ (3,\,3),\;(6,\;6),\;(9,\,9),\;(12,\,12),\;(6,\,12),\;(3,\,9),(3,\,12),\,(3,\,6)\} $ be a relation on the set $A = \{ 3,\,6,\,9,\,12\} $. The relation is

  • [AIEEE 2005]
  • A

    An equivalence relation

  • B

    Reflexive and symmetric only

  • C

    Reflexive and transitive only

  • D

    Reflexive only

Similar Questions

If $R = \{(6, 6), (9, 9), (6, 12), (12, 12), (12,6)\}$ is a relation on set $A = \{3, 6, 9, 12\}$ , then relation $R$ is

If $A = \left\{ {1,2,3,......m} \right\},$ then total number of reflexive relations that can be defined from $A \to A$ is 

In the set $A = \{1, 2, 3, 4, 5\}$, a relation $R$ is defined by $R = \{(x, y)| x, y$ $ \in  A$ and $x < y\}$. Then $R$ is

If $R$ is a relation from a set $A$ to a set $B$ and $S$ is a relation from $B$ to a set $C$, then the relation $SoR$

Let a relation $R$ on $\mathbb{N} \times \mathbb{N}$ be defined as : $\left(\mathrm{x}_1, \mathrm{y}_1\right) \mathrm{R}\left(\mathrm{x}_2, \mathrm{y}_2\right)$ if and only if $\mathrm{x}_1 \leq \mathrm{x}_2$ or $\mathrm{y}_1 \leq \mathrm{y}_2$

Consider the two statements :

($I$) $\mathrm{R}$ is reflexive but not symmetric.

($II$) $\mathrm{R}$ is transitive

Then which one of the following is true?

  • [JEE MAIN 2024]