ऐसे संबंध का उदाहरण दीजिए, जो सममित तथा संक्रामक हो कितु स्वतुल्य न हो।
Let $A=\{-5,-6\}$
Define a relation $R$ on $A$ as
$R=\{(-5,-6),(-6,-5),(-5,-5)\}$
Relation $R$ is not reflexive as $(-6,-6)\notin R$
It is seen that $(-5,-6),\,(-6,-5) \in R$. Also, $(-5,-5)\in R$.
$\therefore$ The relation $R$ is transitive.
Hence, relation $R$ is symmetric and transitive but not reflexive.
माना $A$ किसी परिवार के बच्चों का अरिक्त समुचय है, संबंध $x, y $ का भाई है' $A$ पर है
समुच्चय $8x \equiv 6(\bmod 14),\,x \in Z$, का हल है
माना $A=\{1,2,3,4, \ldots . .10\}$ और $B=\{0,1,2,3,4\}$ हैं। संबंध $\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{A}: 2(\mathrm{a}-\mathrm{b})^2+\right.$ $3(\mathrm{a}-\mathrm{b}) \in \mathrm{B}\}$ में अवयवों की संख्या है______________
माना $\mathbb{R}$ में एक सम्बन्ध $R$ है जो निम्न प्रकार दिया गया है $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): 3 \mathrm{a}-3 \mathrm{~b}+\sqrt{7}$ अपरिमेय संख्या है \} | तब $\mathrm{R}$
यदि $ R$ समुच्चय $A$ से $ B $ में संबंध है तथा $S$ समुच्च्य $B$ से $C $ में संबंध है, तब संबंध $ SoR $ है