Give an example of a relation. Which is Transitive but neither reflexive nor symmetric.
Consider a relation $R$ in $R$ defined as:
$R =\{( a , b ): a < b \}$
For any $a \in R$, we have $(a, a) \notin R$ since a cannot be strictly less than a itself.
In fact, $a=a$
$\therefore R$ is not reflexive.
Now, $(1,2)\in R$ $($ as $1<2)$
But, $2$ is not less than $1.$
$\therefore (2,1) \notin R$
$\therefore R$ is not symmetric.
Now, let $(a, b),\,(b, c) \in R$
$\Rightarrow a < b$ and $b < c$
$\Rightarrow a < c$
$\Rightarrow(a, c) \in R$
$\therefore R$ is transitive.
Hence, relation $R$ is transitive but not reflexive and symmetric.
Let $R$ be a relation on $N$ defined by $x + 2y = 8$. The domain of $R$ is
Let $R$ be a relation on $Z \times Z$ defined by$ (a, b)$$R(c, d)$ if and only if $ad - bc$ is divisible by $5$ . Then $\mathrm{R}$ is
Let $R$ and $S$ be two relations on a set $A$. Then
Let $N$ denote the set of all natural numbers and $R$ be the relation on $N \times N$ defined by $(a, b)$ $R$ $(c, d)$ if $ad(b + c) = bc(a + d),$ then $R$ is
Let $A=\{1,2,3,4\}$ and $R$ be a relation on the set $A \times A$ defined by $R=\{((a, b),(c, d)): 2 a+3 b=4 c+5 d\}$. Then the number of elements in $R$ is: