જે પરંપરિત હોય પરંતુ સ્વવાચક કે સંમિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો
Consider a relation $R$ in $R$ defined as:
$R =\{( a , b ): a < b \}$
For any $a \in R$, we have $(a, a) \notin R$ since a cannot be strictly less than a itself.
In fact, $a=a$
$\therefore R$ is not reflexive.
Now, $(1,2)\in R$ $($ as $1<2)$
But, $2$ is not less than $1.$
$\therefore (2,1) \notin R$
$\therefore R$ is not symmetric.
Now, let $(a, b),\,(b, c) \in R$
$\Rightarrow a < b$ and $b < c$
$\Rightarrow a < c$
$\Rightarrow(a, c) \in R$
$\therefore R$ is transitive.
Hence, relation $R$ is transitive but not reflexive and symmetric.
કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $\mathrm{A}$ પર વ્યાખ્યાયિત સંબંધ $ \mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}$ અને $\mathrm{y}$ એક જ સ્થળે કામ કરે છે. $\}$ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
ધારો કે $R$ એ ، જો $2 a+3 b$ એ $5$ નો ગુણિત હોય, તો $a R b, a, b \in N$ ' મુજબ વ્યાખ્યાયિત $N$ પરનો સંબંધ છે. તો $R$ એ
ધારો કે $A =\{2,3,4,5, \ldots ., 30\}$ અને $A \times A$ પરનો સામ્ય સંબંધ $^{\prime} \simeq ^{\prime}$ એ $(a, b) \simeq (c, d),$ તો અને તો જ $ad =bc$ પ્રમાણે વ્યાખ્યાયિત છે. તો ક્રમયુક્ત જોડ $(4, 3)$ સાથે સામ્ય સંબંધનું સમાધાન કરે તેવી ક્રમયુક્ત જડની સંખ્યા .... છે.
ગણ $A = \{1, 2, 3\}$ પર સંબંધ $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ હોય તો સંબંધએ . . . થાય.
ચાર સભ્ય ધરાવતા ગણ પરના સ્વવાચક સંબંધની સંખ્યા મેળવો.