જયારે સદિશ $\overrightarrow{ A }=2 \hat{i}+3 \hat{j}+2 \hat{k}$ ને બીજા એક સદિશ $\overrightarrow{ B }$ માંથી બાદ કરવામાં આવે છે ત્યારે તે $2 \hat{j}$ સદિશ જેટલું મૂલ્ય આપે છે. તો સદિશ $\overrightarrow{B}$ નું માન $............$ હશે.
$\sqrt{13}$
$\sqrt{33}$
$\sqrt{6}$
$\sqrt{5}$
$\vec P $ અને $\vec Q $ બે સદીશોનું પરિણામી $\vec R $ છે. જો $\vec Q $ બમણું હોય તો પરિણામી સદિશ એ $\vec P $ ને લંબ હોય છે તો $\vec R $ નું મૂલ્ય કેટલું થાય ?
શું $\mathop A\limits^ \to + \mathop B\limits^ \to \,$ $=$ $\mathop A\limits^ \to - \mathop B\limits^ \to \,$ શક્ય છે ?
કેટલાક સદિશોના પરિણામીનો $x$ ઘટક.......
(a) એ સદિશોના $x$ ઘટકના સરવાળા જેટલો હોય છે.
(b) સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ ઓછો હોય છે.
(c) સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ વધારે હોય છે.
(d) સદિશોના મૂલ્યના સરવાળા જેટલો હોય છે.
આપેલા વિધાન માથી સાચા વિધાન ક્યાં છે ?
$\overrightarrow{ A }=4 \hat{i}+3 \hat{j}$ અને $\overrightarrow{ B }=4 \hat{i}+2 \hat{j}$ છે. $\overrightarrow{ A }$ ને સમાંતર અને જેની તીવ્રતા $\overrightarrow{ B }$ કરતા પાંચ ગણી હોય તે સદિશ શોધો.
સદિશોના સરવાળા અને બાદબાકી માટેની બૈજિક રીતે સમજાવો.