નીચે બે વિધાનો આપેલા છે. એકને કથન $A$ અને બીજાને કારણ $R$ થી દર્શાવવામાં આવ્યા છે.
ક્થન $(A)$ : પાણીના બુંદના દોલનોનો આવર્તકાળ પૃષ્ઠતાણ $(S)$ ઉપર આધાર રાખે છે, જો પ્રવાહીની ઘનતા $\rho$, બુંદની ત્રિજ્યા $r$ હોય, તો $T = K \sqrt{ \rho r ^3 / S ^{3 / 2}}$ એ પરિમાણિક રીતે સાચું છે. જ્યાં $K$ એ પરિમાણરહિત છે.
કારણ $(R)$ : પરિમાણીક વિશ્લેષણની મદદથી આપણાને જ.બા. સમય કરતા જુદું પરિમાણ મળે છે.
ઉપરોક્ત વિધાનોમાં સંદર્ભમાં, નીચે આપેલા વિકલ્પોમાંથી સૌથી સાચો વિકલ્પ પસંદ કરો.
$(A)$ અને $(R)$ બંને સાચાં છે અને $(R)$ એ $(A)$ ની સાચી સમજણ આપે છે.
$(A)$ અને $(R)$ બંને સાચાં છે અને $(R)$ એ $(A)$ ની સાચી સમજણ આપતું નથી.
$(A)$ સાયું છે પણ $(R)$ ખોટું છે.
$(A)$ ખોટું છે પણ $(R)$ સાચું છે.
જો પૃષ્ઠતાણ $(S)$, જડત્વની ચાકમાત્રા $(I)$ અને પ્લાન્કનો અચળાંક $(h)$ ને મૂળભૂત એકમ તરીકે લેવામાં આવે, તો રેખીય વેગમાનનું પરિમાણિક સૂત્ર શું થશે?
એક વિદ્યાર્થી ભૌતિકવિજ્ઞાનમાં પ્રચલિત એવા કોઈ કણનાં ચલિતદળ $(moving\, mass)$ $m$ અને સ્થિર દળ $(rest \,mass)$ $m_{0}$ તથા કણનો વેગ $v$ અને પ્રકાશની ઝડપ $c$ વચ્ચેનો (આ સંબંધ પ્રથમ આલ્બર્ટ આઇન્સ્ટાઇનના વિશિષ્ટ સાપેક્ષતાના સિદ્ધાંતનાં પરિણામ સ્વરૂપે મળેલ હતો.) સંબંધને લગભગ સાચો યાદ રાખીને લખે છે. પરંતુ અચળાંક $c$ ને ક્યાં મૂકવો તે ભૂલી જાય છે. તે $m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$ લખે છે. અનુમાન કરો કે $c$ ને ક્યાં મૂકવો જોઈએ ?
બે પરમાણુઓ વચ્ચેની આંતરક્રિયાના બળને
$F=\alpha \beta \,\exp \,\left( { - \frac{{{x^2}}}{{\alpha kt}}} \right);$
વડે આપવામાં આવે છે, જ્યાં $x$ એ અંતર, $k$ બોલ્ટઝમેન અચળાંક અને $ T$ તાપમાન છે. તથા $\alpha$ અને $\beta$ એ અન્ય અચળાંકો છે. $\beta$ નું પરિમાણિક શું થાય?
બળને $F = a\, sin\, ct + b\, cos\, dx$ સમીકરણ મુજબ આપવામાં આવે છે, જ્યાં $t$ સમય અને $x$ અંતર છે તો $a/b$ નું પારિમાણિક સૂત્ર કેટલું થાય?