માર્શિયન પધ્ધતિમાં બળ $(F)$, પ્રવેગ $(A)$ અને સમય $(T)$ ને મૂળભૂત રાશિ લેવામાં આવે તો માર્શિયન પધ્ધતિમાં લંબાઇનું પારિમાણિક સૂત્ર શું થાય?
$F{T^2}$
${F^{ - 1}}{T^2}$
${F^{ - 1}}{A^2}{T^{ - 1}}$
$A{T^2}$
જો પ્રકાશના વેગ $c$, પ્લાન્ક અચળાંક $h$ અને ગુરુત્વાકર્ષી અચળાંક $ G$ ને મૂળભૂત રાશિઓ તરીકે લેવામાં આવે તો સમયને આ ત્રણ રાશિઓમાં દર્શાવતા સૂત્રો મેળવો.
જો ${E}, {L}, {m}$ અને ${G}$ અનુક્રમે ઉર્જા, કોણીય વેગમાન, દળ અને ગુરુત્વાકર્ષણનો અચળાંક હોય, તો સૂત્ર ${P}={EL}^{2} {m}^{-5} {G}^{-2}$ માં રહેલ રાશિ $P$ નું પરિમાણિક સૂત્ર કેવું થાય?
કણનો $t $ સમયે (સેકન્ડમાં) વેગ ($cm/sec$) $v = at + \frac{b}{{t + c}}$ સંબંધ દ્રારા અપાય છે; $a,b$ અને $c$ નુ પારિમાણિક સૂત્ર શું થાય?
દોલનો કરતી દોરીની આવૃત્તિ $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$ છે,જયાં $p$ દોરીમાં ગાળાની સંખ્યા અને $l$ લંબાઇ છે.તો $m$ નું પારિમાણીક સૂત્ર શું થાય?
$W = \frac{1}{2}\,\,K{x^2}$ સૂત્રમાં $K$ નું પારિમાણિક સૂત્ર શું થાય?