नीचे दो कथन दिए गए हैं : इनमें से एक 'अभिकथन (A)' द्वारा एवं दूसरा 'कारण (R)' द्वारा निरूपित है।

अभिकथन $(A)$ : किसी द्रव की बूँद के दोलन का आवर्तकाल, पृष्ठ तनाव $( S )$ पर निर्भर करता है। यदि द्रव का घनत्व $\rho$ एवं बूँद की त्रिज्या $r$ तो $T$ $= k \sqrt{ pr ^3 / s }$ विमाओं के अनुसार सही है। जहाँ $K$ विमाविहीन है।

कारण $(R)$ : विमीय विश्लेषण करने पर, हमें $R.H.S.$ (दाहिनी हाथ की तरफ) पर, समय की विमा से अलग विमा प्राप्त होती है।

उपरोक्त कथनों के आधार पर, नीचे दिए गए विकल्पों में से सही उत्तर चुनें

  • [JEE MAIN 2022]
  • A

    $(A)$ और $( R )$ दोनों सत्य है, एवं $( R ),( A )$ की सही व्याख्या है।

  • B

    $(A)$ और $( R )$ दोनों सत्य हैं, किन्तु $(R), (A)$ की सही व्याख्या नहीं है।

  • C

    $( A )$ सत्य है किन्तु $( R )$ असत्य है।

  • D

    $( A )$ असत्य है किन्तु $( R )$ सत्य है।

Similar Questions

यदि प्रकाश वेग $(c)$, सार्वत्रिक गुरुत्वाकर्षण नियतांक $[G]$, प्लांक नियतांक $[h]$ को मूल मात्रकों की तरह प्रयुक्त किया जाये तब इस नयी पद्धति में समय की विमा होगी

  • [AIIMS 2008]

किसी दोलनशील द्रव बूंद की आवृत्ति (v); द्रव की त्रिज्या $(r)$, द्रव के घनत्व $(\rho)$ व द्रव के पृष्ठ तनाव (s) पर $v=r^a \rho^b s^c$ के अनुसार निर्भर करती है तो $a$, $\mathrm{b}$ व $\mathrm{c}$ के मान क्रमशः है :-

  • [JEE MAIN 2023]

मार्टियन पद्धति में बल $(F)$, त्वरण $(A)$ और समय $(T)$ को मूल भौतिक राशि के रुप में उपयोग करते हैं। लम्बाई की विमायें मार्टियन पद्धति में होंगी

कुछ गैसों की अवस्था की समीकरण $\left(P+\frac{a}{V^2}\right)$ $(V-b)=R T$ से प्रदर्शित होती है, जहाँ $P$ दाब, $\mathrm{V}$ आयतन, $\mathrm{T}$ ताप तथा $a, b, R$ नियतांक हैं। $\frac{b^2}{a}$ के समतुल्य विमीय सूत्र वाली भौतिक राशि होगी:

  • [JEE MAIN 2023]

व्यंजक $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ में $P$ दाब, $ Z$ दूरी, $k$ बोल्ट्जमैन स्थिरांक एवं तापक्रम दर्शाता है तो का विमीय सूत्र होगा

  • [IIT 2004]