नीचे दो कथन दिए गए हैं : इनमें से एक 'अभिकथन (A)' द्वारा एवं दूसरा 'कारण (R)' द्वारा निरूपित है।
अभिकथन $(A)$ : किसी द्रव की बूँद के दोलन का आवर्तकाल, पृष्ठ तनाव $( S )$ पर निर्भर करता है। यदि द्रव का घनत्व $\rho$ एवं बूँद की त्रिज्या $r$ तो $T$ $= k \sqrt{ pr ^3 / s }$ विमाओं के अनुसार सही है। जहाँ $K$ विमाविहीन है।
कारण $(R)$ : विमीय विश्लेषण करने पर, हमें $R.H.S.$ (दाहिनी हाथ की तरफ) पर, समय की विमा से अलग विमा प्राप्त होती है।
उपरोक्त कथनों के आधार पर, नीचे दिए गए विकल्पों में से सही उत्तर चुनें

  • [JEE MAIN 2022]
  • A
    $(A)$ और $( R )$ दोनों सत्य है, एवं $( R ),( A )$ की सही व्याख्या है।
  • B
    $(A)$ और $( R )$ दोनों सत्य हैं, किन्तु $(R), (A)$ की सही व्याख्या नहीं है।
  • C
    $( A )$ सत्य है किन्तु $( R )$ असत्य है।
  • D
    $( A )$ असत्य है किन्तु $( R )$ सत्य है।

Similar Questions

यदि समय $(t)$, वेग $(v)$, और कोणीय संवेग $(l)$ को मूल मात्रकों के रूप में लिया गया है, तब $t, v$ और $l$ के पदों में द्रव्यमान $( m )$ की विमाएं होंगी।

  • [JEE MAIN 2021]

यदि बल $(\mathrm{F})$, वेग $(\mathrm{V})$ तथा समय $(\mathrm{T})$ को मूलभूत भौतिक राशियाँ मान लिया जाये, तो घनत्व का विमीय सूत्र होगा:

  • [JEE MAIN 2023]

दो परमाणुओं के मध्य अन्योन्यक्रिया बल सम्बन्ध $F =\alpha \beta \exp \left(-\frac{ x ^{2}}{\alpha kt }\right)$ से दिया जाता है जहाँ $x$ दूरी है, $k$ बोल्ट्जमैन नियतांक तथा $T$ तापमान है और $\alpha$ तथा $\beta$ दो स्थिरांक हैं। $\beta$ की विमा होगी।

  • [JEE MAIN 2019]

बल $( F )$ को समय $( t )$ और विस्थापन $( x )$ के पदों में दिए गए समीकरण के रूप में प्रदर्शित किया गया है। $F = A \cos Bx + C \sin Dt$ तो $\frac{ AD }{ B }$ की विमा होगी।

  • [JEE MAIN 2021]

एक विमाहीन राशि $P$ के लिये व्यंजक $P =\frac{\alpha}{\beta} \log _{ e }\left(\frac{ kt }{\beta x }\right)$ द्वारा दिया जाता है, जहाँ $\alpha$ तथा $\beta$ नियतांक है, $x$ दूरी एवं $k$ बोल्ट्जमान नियतांक है तथा $t$ तापमान है, तो राशि $\alpha$ की विमाएँ होगी :

  • [JEE MAIN 2022]