If $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, then
$\vec{P}=\overrightarrow{0}$
$\vec{Q}=\overrightarrow{0}$
$|\vec{P}|=1$
$|\vec{Q}|=1$
(b) $\vec{P}+\vec{Q} =\vec{P}-\vec{Q}$
$\Rightarrow \vec{Q} =0$
Given that $\overrightarrow A + \overrightarrow B = \overrightarrow C $and that $\overrightarrow C $ is $ \bot $ to $\overrightarrow A $. Further if $|\overrightarrow A |\, = \,|\overrightarrow C |,$then what is the angle between $\overrightarrow A $ and $\overrightarrow B $
Following sets of three forces act on a body. Whose resultant cannot be zero
The magnitude of vectors $\overrightarrow{ OA }, \overrightarrow{ OB }$ and $\overrightarrow{ OC }$ in the given figure are equal. The direction of $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ with $x$-axis will be
If $\vec{P}+\vec{Q}=\overrightarrow{0}$, then which of the following is necessarily true?
Confusing about what to choose? Our team will schedule a demo shortly.