નીચે આપેલ કોલમ $-I$ માં સદિશો ,$\vec a \,$ $\vec b \,$ અને $\vec c \,$ વચ્ચેનો સંબંધ અને કોલમ $-II$ માં ,$\vec a \,$ $\vec b \,$ અને $\vec c \,$ સદિશો $XY$ સમતલમાં નમન સાથે દર્શાવેલ છે, તો કોલમ $-I$ અને કોલમ $-II$ ને સારી રીતે જોડો.
કોલમ $-I$ | કોલમ $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |
$(a-i v),(b-i i i),(c-i),(d-i i)$
આપેલા સદિશોનો સંબંધ ત્રિકોણના સરવાળાની રીતે મેળવી શકાય. જેમાં બાજુઓને પુચ્છ અને શીર્ષથી સાચી રીતે દર્શાવીએ તો નીચેના સંબંધો મળે.
આકૃતિ $(i)$માં $\vec{c}+\vec{a}=\vec{b}$ છે તેથી $\vec{b}-\vec{c}=\vec{a}$ એટલે $\vec{b}-\vec{a}=\vec{c}$
આકૃતિ (ii)માં $\vec{a}+\vec{b}+\vec{c}=0$ જે કોલમ$-I$માં $(d)$ છે.
આકૃતિ (iii)માં $\vec{c}+\vec{b}=\vec{a} \Rightarrow \vec{a}-\vec{c}=b$ જે કોલમ$-I$માં $(b)$ છે.
આકૃતિ (iv)માં $\vec{a}+\vec{b}=\vec{c}$ જે કોલમ$-I$માં $(a)$ છે.
સમાન મૂલ્યો ધરાવતાં ત્રણ સદિશો સમતોલનમાં હોય,તો તેમની વચ્ચેનો ખૂણો કેટલો હશે?
નીચેનામાંથી કઈ રાશિ/ રાશિઓ યામોક્ષોનાં અભિગમની પસંદગી પર આધાર રાખે છે?
$(a)$ $\vec{a}+\vec{b}$
$(b)$ $3 a_x+2 b_y$
$(c)$ $(\vec{a}+\vec{b}-\vec{c})$
જો $| A + B |=| A |+| B |$ હોય તો સદિશ $ \overrightarrow A $ અને $ \overrightarrow B $ વચ્ચેનો ખૂણો કેટલો હોવો જોઈએ?
એક પદાર્થ પર બે બળો કે જેમના મૂલ્યો અનુક્રમે $3\,N$ અને $4\,N$ હોય તેવા બળો લાગે છે. જો તેમના વચ્ચેનેા ખૂણો $90^°$ હોય તો તેમનું પરિણામી બળ...$N$
જો બે સમાન મૂલ્યના બળો કોઈ પદાર્થ પર પૂર્વ અને ઉત્તર દિશામાં લગાવવામાં આવે તો....