Gujarati
8. Sequences and Series
medium

Given that $n$ A.M.'s are inserted between two sets of numbers $a,\;2b$and $2a,\;b$, where $a,\;b \in R$. Suppose further that ${m^{th}}$ mean between these sets of numbers is same, then the ratio $a:b$ equals

A

$n - m + 1:m$

B

$n - m + 1:n$

C

$n:n - m + 1$

D

$m:n - m + 1$

Solution

(d) ${m^{th}}$ mean between $a,\;2b$ is $a + \frac{{m(2b – a)}}{{n + 1}}$ ……$(i)$

and ${m^{th}}$ mean between $2a,\;b$ is $2a + \frac{{m(b – 2a)}}{{n + 1}}$……$(ii)$

Accordingly, $a + \frac{{m(2b – a)}}{{n + 1}} = 2a + \frac{{m(b – 2a)}}{{n + 1}}$

$ \Rightarrow $ $m(2b – a) = a(n + 1) + m(b – 2a)$

$ \Rightarrow $ $a(n – m + 1) = bm$

$ \Rightarrow $ $\frac{a}{b} = \frac{m}{{n – m + 1}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.