If ${n^{th}}$ terms of two $A.P.$'s are $3n + 8$ and $7n + 15$, then the ratio of their ${12^{th}}$ terms will be

  • A

    $4/9$

  • B

    $7/16$

  • C

    $3/7$

  • D

    $8/15$

Similar Questions

Let $l_1, l_2, \ldots, l_{100}$ be consecutive terms of an arithmetic progression with common difference $d_1$, and let $w_1, w_2, \ldots, w_{100}$ be consecutive terms of another arithmetic progression with common difference $d_2$, where $d_1 d_2=10$. For each $i=1,2, \ldots, 100$, let $R_i$ be a rectangle with length $l_i$, width $w_i$ and area $A_i$. If $A_{51}-A_{50}=1000$, then the value of $A_{100}-A_{90}$ is. . . . . 

  • [IIT 2022]

Let $a_1 , a_2, a_3, .... , a_n$, be in $A.P$. If $a_3 + a_7 + a_{11} + a_{15} = 72$ , then the sum of its first $17$ terms is equal to

  • [JEE MAIN 2016]

Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?

$(A)$ $T_{20}=1604$

$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$

$(C)$ $T_{30}=3454$

$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$

  • [IIT 2022]

The sides of a triangle are distinct positive integers in an arithmetic progression. If the smallest side is $10$, the number of such triangles is

  • [KVPY 2012]

Which term of the sequence $( - 8 + 18i),\,( - 6 + 15i),$ $( - 4 + 12i)$ $,......$ is purely imaginary