Given an $A.P.$ whose terms are all positive integers. The sum of its first nine terms is greater than $200$ and less than $220$. If the second term in it is $12$, then its $4^{th}$ term is
$8$
$16$
$20$
$24$
Suppose that all the terms of an arithmetic progression ($A.P.$) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is $6: 11$ and the seventh term lies in between $130$ and $140$ , then the common difference of this $A.P.$ is
If ${a^2},\;{b^2},\;{c^2}$ are in $A.P.$, then ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ and ${(a + b)^{ - 1}}$ will be in
The first term of an $A.P.$ of consecutive integers is ${p^2} + 1$ The sum of $(2p + 1)$ terms of this series can be expressed as
Let $3,7,11,15, \ldots, 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to.....................
The income of a person is $Rs. \,3,00,000,$ in the first year and he receives an increase of $Rs.\,10,000$ to his income per year for the next $19$ years. Find the total amount, he received in $20$ years.