Given an $A.P.$ whose terms are all positive integers. The sum of its first nine terms is greater than $200$ and less than $220$. If the second term in it is $12$, then its $4^{th}$ term is
$8$
$16$
$20$
$24$
$150$ workers were engaged to finish a piece of work in a certain number of days. $4$ workers dropped the second day, $4$ more workers dropped the third day and so on. It takes eight more days to finish the work now. The number of days in which the work was completed is
If $a, b, c, d$ are in $G.P.,$ prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$
The common difference of the $A.P.$ $b_{1}, b_{2}, \ldots,$ $b_{ m }$ is $2$ more than the common difference of $A.P.$ $a _{1}, a _{2}, \ldots, a _{ n } .$ If $a _{40}=-159, a _{100}=-399$ and $b _{100}= a _{70},$ then $b _{1}$ is equal to
Let the sum of $n, 2 n, 3 n$ terms of an $A.P.$ be $S_{1}, S_{2}$ and $S_{3},$ respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$
If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$