If $19^{th}$ terms of non -zero $A.P.$ is zero, then its ($49^{th}$ term) : ($29^{th}$ term) is

  • [JEE MAIN 2019]
  • A

    $4 : 1$ 

  • B

    $1 : 3$ 

  • C

    $3 : 1$ 

  • D

    $2 : 1$ 

Similar Questions

If $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ are in $A.P.$, then

Let $x_n, y_n, z_n, w_n$ denotes $n^{th}$ terms of four different arithmatic progressions with positive terms. If $x_4 + y_4 + z_4 + w_4 = 8$ and $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ then maximum value of $x_{20}.y_{20}.z_{20}.w_{20}$ is-

Let $3,6,9,12, \ldots$ upto $78$ terms and $5,9,13,17, \ldots$ upto $59$ terms be two series. Then, the sum of the terms common to both the series is equal to

  • [JEE MAIN 2022]

If the ${p^{th}}$ term of an $A.P.$ be $q$ and ${q^{th}}$ term be $p$, then its ${r^{th}}$ term will be

Let $l_1, l_2, \ldots, l_{100}$ be consecutive terms of an arithmetic progression with common difference $d_1$, and let $w_1, w_2, \ldots, w_{100}$ be consecutive terms of another arithmetic progression with common difference $d_2$, where $d_1 d_2=10$. For each $i=1,2, \ldots, 100$, let $R_i$ be a rectangle with length $l_i$, width $w_i$ and area $A_i$. If $A_{51}-A_{50}=1000$, then the value of $A_{100}-A_{90}$ is. . . . . 

  • [IIT 2022]