Given that the events $A$ and $B$ are such that $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ and $\mathrm{P}(\mathrm{B})=p .$ Find $p$ if they are mutually exclusive.
It is given that $P(A)=\frac{1}{2},\, P(A \cup B)=\frac{3}{5}$ and $P(B)=p$
When $A$ and $B$ are mutually exclusive, $A \cap B=\phi$
$\therefore P(A \cap B)=0$
It is known that, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow \frac{3}{5}=\frac{1}{2}+p-0$
$\Rightarrow p=\frac{3}{5}-\frac{1}{2}=\frac{1}{10}$
The probability that a leap year selected at random contains either $53$ Sundays or $53 $ Mondays, is
Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that exactly one of them problem
Let $A$ and $B $ be two events such that $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are
For an event, odds against is $6 : 5$. The probability that event does not occur, is
Two events $A$ and $B$ will be independent, if