$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( B \cap A ^{\prime}\right)$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P ( A )=0.54$,  $P ( B )=0.69$,  $P (A \cap B)=0.35$

We know that

$n\left( B \cap A ^{\prime}\right)=n( B )-n( A \cap B )$

$\Rightarrow \frac{n\left( B \cap A ^{\prime}\right)}{n( S )}$ $=\frac{n( B )}{n( S )}-\frac{n( A \cap B )}{n( S )}$

$\therefore P \left( B \cap A ^{\prime}\right)= P ( B )- P ( A \cap B )$

$\therefore P \left( B \cap A ^{\prime}\right)=0.69-0.35=0.34$

Similar Questions

Twelve tickets are numbered $1$ to $12$. One ticket is drawn at random, then the probability of the number to be divisible by $2$ or $3$, is

Suppose that $A, B, C$ are events such that $P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ then $P\,(A + B) = $

Two dice are thrown independently. Let $A$ be the event that the number appeared on the $1^{\text {st }}$ die is less than the number appeared on the $2^{\text {nd }}$ die, $B$ be the event that the number appeared on the $1^{\text {st }}$ die is even and that on the second die is odd, and $C$ be the event that the number appeared on the $1^{\text {st }}$ die is odd and that on the $2^{\text {nd }}$ is even. Then

  • [JEE MAIN 2023]

A card is drawn from a pack of cards. Find the probability that the card will be a queen or a heart

If $A$ and $B$ are two independent events, then $A$ and $\bar B$ are