$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( B \cap A ^{\prime}\right)$.
It is given that $P ( A )=0.54$, $P ( B )=0.69$, $P (A \cap B)=0.35$
We know that
$n\left( B \cap A ^{\prime}\right)=n( B )-n( A \cap B )$
$\Rightarrow \frac{n\left( B \cap A ^{\prime}\right)}{n( S )}$ $=\frac{n( B )}{n( S )}-\frac{n( A \cap B )}{n( S )}$
$\therefore P \left( B \cap A ^{\prime}\right)= P ( B )- P ( A \cap B )$
$\therefore P \left( B \cap A ^{\prime}\right)=0.69-0.35=0.34$
If $A$ and $B$ are two events such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{2}{3},$ then
Let $A$ and $B $ be two events such that $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are
If $A$ and $B$ are two events such that $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ and $P\,(A) = 2\,P\,(B),$ then $P\,(A) = $
Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that both balls are red.
If $E$ and $F$ are events such that $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find : $P ( E$ or $F )$