$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ परस्पर अपवर्जी हैं।
It is given that $P(A)=\frac{1}{2},\, P(A \cup B)=\frac{3}{5}$ and $P(B)=p$
When $A$ and $B$ are mutually exclusive, $A \cap B=\phi$
$\therefore P(A \cap B)=0$
It is known that, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow \frac{3}{5}=\frac{1}{2}+p-0$
$\Rightarrow p=\frac{3}{5}-\frac{1}{2}=\frac{1}{10}$
किसी प्रतिदर्श समष्टि में दो घटनाओं $A$ और $B$ के लिए
निम्नलिखित सारणी में खाली स्थान भरिए:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |
$52$ पत्तों की एक गड्डी में से यादृच्छया बिना प्रतिस्थापित किए गए दो पत्ते निकाले गए। दोनों पत्तों के काले रंग का होने की प्रायिकता ज्ञात कीजिए।
दी गई घटनाएँ $A$ और $B$ ऐसी हैं $,$ जहाँ $P ( A )=\frac{1}{4}, P ( B )=\frac{1}{2}$ और $P ( A \cap B )=\frac{1}{8}$ तब $P ( A -$ नहीं और $B$ -नहीं $)$ ज्ञात कीजिए।
एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
विद्यार्थी ने एन.सी.सी. या एन. एस.एस. को चुना है।