$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ ) का मान ज्ञात कीजिए।
It is given that $P(A)=0.3,\,P(B)=0.6$..
Also, $A$ and $B$ are independent events.
$\mathrm{P}(\mathrm{A}$ and $\mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
$\Rightarrow $ $ \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.3 \times 0.6=0.18$
एक परीक्षण (experiment) पर विचार कीजिए जिसमें एक सिक्के को बार बार लगातार उछाला जाता है और जैसे ही दो क्रमागत (consecutive) उछालों का परिणाम (outcome) समान आता है, परीक्षण रोक दिया जाता है। यदि एक याद्धच्छिक उछाल का परिणाम चित्त में (random toss resulting in head) होने की प्रायिकता $\frac{1}{3}$ है, तब परीक्षण के चित्त (head) के साथ रुकने कि प्रायिकता है
संतरों के एक डिब्बे का निरीक्षण उसमें से तीन संतरों को यादृच्छया बिना प्रतिस्थापित किए हुए निकाल कर किया जाता है। यदि तीनों निकाले गए संतरे अच्छे हों तो डिब्बे को बिक्री के लिए स्वीकृत किया जाता है अन्यथा अस्वीकृत कर देते हैं। एक डिब्बा जिसमें $15$ संतरे हैं जिनमें से $12$ अच्छे व $3$ खराब संतरे हैं, के बिक्री के लिए स्वीकृत होने की प्रायिकता ज्ञात कीजिए।
एक न्याय्य सिक्का और एक अभिनत पासे को उछाला गया। मान लें $A$ घटना 'सिक्के पर चित प्रकट होता है' और $B$ घटना 'पासे पर संख्या $3$ प्रकट होती है' को निरूपित करते हैं। निरीक्षण कीजिए कि घटनाएँ $A$ और $B$ स्वतंत्र हैं या नहीं?
एक सिक्का दो बार उछाला जाता है। यदि घटनाएँ $A$ तथा $B$ निम्न प्रकार परिभाषित हो : $A =$ पहली उछाल पर शीर्ष, $B = $ दूसरी उछाल पर शीर्ष, तो $(A \cup B)$ की प्रायिकता है
$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ स्वतंत्र हैं।