Given two independent events $A$ and $B$ such $P(A)$ $=0.3,\, P(B)=0.6 .$ Find $P(A$ or $B)$
It is given that $P(A)=0.3, P(B)=0.6$
Also, $A$ and $B$ are independent events.
$P(A$ or $B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.3+0.6-0.18$
$=0.72$
Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is
If $E$ and $F$ are independent events such that $0 < P(E) < 1$ and $0 < P\,(F) < 1,$ then
Three ships $A, B$ and $C$ sail from England to India. If the ratio of their arriving safely are $2 : 5, 3 : 7$ and $6 : 11$ respectively then the probability of all the ships for arriving safely is
Three persons $P, Q$ and $R$ independently try to hit a target . If the probabilities of their hitting the target are $\frac{3}{4},\frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by $P$ or $Q$ but not by $R$ is
The probabilities that $A$ and $B$ will die within a year are $p$ and $q$ respectively, then the probability that only one of them will be alive at the end of the year is