Given two independent events $A$ and $B$ such $P(A)$ $=0.3,\, P(B)=0.6 .$ Find $P(A$  or $B)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(A)=0.3, P(B)=0.6$

Also, $A$ and $B$ are independent events.

$P(A$  or $B)=P(A \cup B)$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$=0.3+0.6-0.18$

$=0.72$

Similar Questions

Twelve tickets are numbered $1$ to $12$. One ticket is drawn at random, then the probability of the number to be divisible by $2$ or $3$, is

Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that exactly one of them problem

Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A $  or  $B),$ if $A$ and $B$ are mutually exclusive events.

Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is

  • [JEE MAIN 2020]

If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$