આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ અથવા $B)$ શોધો.
It is given that $P(A)=0.3, P(B)=0.6$
Also, $A$ and $B$ are independent events.
$P(A$ or $B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.3+0.6-0.18$
$=0.72$
ધરોકે $A, B,$ અને $C$ એ ઘટના ઓ છે કે જેથી $ P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ તો $P\,(A + B) = .....$
જો $A$ અને $B$ બે નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે $A$ અને $B$ માંથી ઓછામાં ઓછી એક ઘટના ઉદ્ભવવાની સંભાવના $1 -P(A') P(B')$ છે.
ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ અને $P (A -$ નહી અથવા $B-$ નહી $) =$ $\frac {1}{4}$. $A$ અને $B$ નિરપેક્ષ છે કે નહિ ?
ઘટના $A$ અને $B$ ઉદ્દભવે તેની સંભાવના $0.25$ અને $0.50$ છે. બંને ઘટના સાથે ઉદ્દભવે તેની સંભાવના $0.12$ તો બન્ને ઘટના ન ઉદ્દભવે તેની સંભાવના શોધો.
અહી $S=\{1,2,3, \ldots, 2022\}$ છે. તો યાર્દચ્છિક સંખ્યા $n$ ને ગણ $S$ માંથી પસંદ કરવામાં આવે તેની સંભાવના મેળવો કે જેથી $\operatorname{HCF}( n , 2022)=1$ થાય.