10-2.Transmission of Heat
hard

गर्म पानी $60^{o} C$ से $50^{\circ} C$ पहले $10$ मिनट में ठंडा होता है और $42^{o} C$ तक दूसरे $10$ मिनट में ठंडा होता है। वातावरण का तापमान $\dots^oC$ है

A

 $25$

B

 $10$

C

 $15$

D

 $20$

(JEE MAIN-2014)

Solution

   By $Newton's\,law$ of cooling

$\frac{{{\theta _1} – {\theta _2}}}{t} =  – K\left[ {\frac{{{\theta _1} + {\theta _2}}}{2} – {\theta _0}} \right]$

where ${\theta _0}$ is the temperature of surrounding. Now, hot water cools from ${60^ \circ }C\,to\,{50^ \circ }C$ in $10\,minutes,$

$\frac{{60 – 50}}{{10}} =  – K\left[ {\frac{{60 + 50}}{2}{\theta _0}} \right]\,\,\,\,\,\,\,\,\,\,…\left( i \right)$

Agian, it cools from ${50^ \circ }C\,to\,{42^ \circ }C$ in next $10\,minutes.$

$\frac{{50 – 42}}{{10}} =  – K\left[ {\frac{{50 + 42}}{2} – {\theta _0}} \right]\,\,\,\,\,\,\,\,\,\,…\left( {ii} \right)$

Dividing equations $(i)$ by $(ii)$ we get

$\frac{1}{{0.8}} = \frac{{55 – {\theta _0}}}{{46 – {\theta _0}}}$

$\frac{{10}}{8} = \frac{{55 – {\theta _0}}}{{46 – {\theta _0}}}$

$460 – 10{\theta _0} = 440 – 8{\theta _0}$

$2{\theta _0} = 20$

${\theta _0} = {10^ \circ }c$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.