જો $A=\varnothing $ હોય, તો $P(A)$ ને કેટલા ઘટકો હશે ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that if $A$ is a set with $m$ elements i.e., $n(A)=m,$ then $n[p(A)]=2^{m}$

If $A=\varnothing,$ then $n(A)=0$

$\therefore n[P(A)]=2^{0}=1$

Hence, $P(A)$ has one element.

Similar Questions

ગણના બધા જ ઘટકો લખો :  $C = \{ x:x$ એ પૂર્ણાક છે, ${x^2} \le 4\} $

ગણને ગુણધર્મની રીતે લખો : $\{ 2,4,6 \ldots \} $

$A=\{1,2,\{3,4\}, 5\}$ છે. વિધાન સત્ય છે કે અસત્ય છે ? શા માટે ? :  $\{ \{ 3,4\} \}  \subset A$

ગણ સાન્ત કે અનંત છે? : અંગ્રેજી મૂળાક્ષરોનો ગણ

વિધાન સત્ય છે કે અસત્ય છે તે નક્કી કરો :  જો $A \subset B$ અને $x \notin B,$ તો $x \notin A$