જો $A=\varnothing $ હોય, તો $P(A)$ ને કેટલા ઘટકો હશે ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that if $A$ is a set with $m$ elements i.e., $n(A)=m,$ then $n[p(A)]=2^{m}$

If $A=\varnothing,$ then $n(A)=0$

$\therefore n[P(A)]=2^{0}=1$

Hence, $P(A)$ has one element.

Similar Questions

ગણ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$ ને ગુણધર્મની રીતે દર્શાવો. 

ગણ છે, $\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$ આપેલા છે.

નીચે દર્શાવેલી દરેક ગણની જોડીની વચ્ચે સંજ્ઞા $\subset$ અથવા $ \not\subset $ સમાવિષ્ટ કરો : 

$\phi \,....\,B$   $A \,....\,B$  $A\,....\,C$  $B\,....\,C$

$A=\{a, e, i, o, u\}$ અને $B=\{a, i, u\}$ છે. બતાવો કે $A \cup B=A$.

ગણને યાદીની રીતે લખો : $A = \{ x:x$ એ પૂર્ણાક છે અને $ - 3 < x < 7\} .$

નીચે આપેલ ગણમાંથી સમાન ગણ પસંદ કરો : 

$A=\{2,4,8,12\}, B=\{1,2,3,4\}, C=\{4,8,12,14\}, D=\{3,1,4,2\}$

$E=\{-1,1\}, F=\{0, a\}, G=\{1,-1\}, H=\{0,1\}$