Decide, among the following sets, which sets are subsets of one and another:

$A = \{ x:x \in R$ and $x$ satisfy ${x^2} - 8x + 12 = 0 \} ,$

$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A = \{ x:x \in R$ and $x$ satisfy ${x^2} - 8x + 12 = 0\} $

$2$ and $6$ are the only solutions of $x^{2}-8 x+12=0.$

$\therefore A=\{2,6\}$

$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$

$\therefore D \subset A \subset B \subset C$

Hence, $A \subset B, A \subset C, B \subset C, D \subset A, D \subset B, D \subset C$

Similar Questions

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If $A \not\subset B$ and $B \not\subset C,$ then $A \not\subset C$

Consider the sets

$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$

Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:

$A, \ldots B$

List all the elements of the following sers :

$B = \{ x:x$ is an integer $; - \frac{1}{2} < n < \frac{9}{2}\} $

Which of the following is the empty set

The number of elements in the set $\{ (a,\,b):2{a^2} + 3{b^2} = 35,\;a,\,b \in Z\} $, where $Z$ is the set of all integers, is