Gujarati
Hindi
4-2.Quadratic Equations and Inequations
normal

How many positive real numbers $x$ satisfy the equation $x^3-3|x|+2=0$ ?

A

$1$

B

$3$

C

$4$

D

$6$

(KVPY-2009)

Solution

(a)

We have,

Case $I$ $x > 0 \quad x^3-3|x|+2=0$

$\therefore \quad x^3-3 x+2=0$

$\Rightarrow \quad(x-1)(x-1)(x+2)=0$

$\Rightarrow x=1,-2$

$\text { Since, } x > 0$

$\therefore x \neq-2$

$x=1$

Case $II$ $x < 0$

$\therefore \quad x^3+3 x+2=0$

Graph of $x^3+3 x+2$

Clearly, from graph.

It has one solution lie between $(-1,0)$.

$\therefore$ Positive value of $x=1$

Hence, only one solutions.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.