How many positive real numbers $x$ satisfy the equation $x^3-3|x|+2=0$ ?
$1$
$3$
$4$
$6$
Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1} + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is
$\alpha$, $\beta$ ,$\gamma$ are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ is
The polynomial equation $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ has
The number of distinct real roots of the equation $|\mathrm{x}||\mathrm{x}+2|-5|\mathrm{x}+1|-1=0$ is....................
If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by