4-2.Quadratic Equations and Inequations
hard

If $x$ is real, then the maximum and minimum values of the expression $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ will be

A

$2, 1$

B

$5,\frac{1}{5}$

C

$7,\frac{1}{7}$

D

None of these

(IIT-1984)

Solution

(c) Let $y = \frac{{{x^2} – 3x + 4}}{{{x^2} + 3x + 4}}$

==> $(y – 1){x^2} + 3(y + 1)x + 4(y – 1) = 0$

For $x$ is real $D \ge 0$

==> $9{(y + 1)^2} – 16{(y – 1)^2} \ge 0$

==> $ – 7{y^2} + 50y – 7 \ge 0$==>$7{y^2} – 50y + 7 \le 0$

==> $(y – 7)(7y – 1) \le 0$

Now, the product of two factors is negative if one in $ – ve$and one in $ + ve$.

Case I : $(y – 7) \ge 0$ and $(7y – 1) \le 0$

==> $y \ge 7$and $y \le \frac{1}{7}$. But it is impossible

Case II : $(y – 7) \le 0$and $(7y – 1) \ge 0$

==> $y \le 7$and $y \ge \frac{1}{7} \Rightarrow \frac{1}{7} \le y \le 7$

Hence maximum value is $7$ and minimum value is $\frac{1}{7}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.