If $x$ is real, then the maximum and minimum values of the expression $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ will be

  • [IIT 1984]
  • A

    $2, 1$

  • B

    $5,\frac{1}{5}$

  • C

    $7,\frac{1}{7}$

  • D

    None of these

Similar Questions

$\alpha$, $\beta$ ,$\gamma$  are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta  + \gamma }},\frac{1}{{\gamma  + \alpha }},\frac{1}{{\alpha  + \beta }}$ is

Let $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$ be the solution of the equation $4 x^4+8 x^3-17 x^2-12 x+9=0$ and $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. Then the value of $\mathrm{m}$ is..........

  • [JEE MAIN 2024]

If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be

If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to

Let $p(x)=a_0+a_1 x+\ldots+a_n x^n$ be a non-zero polynomial with integer coefficients. If $p(\sqrt{2}+\sqrt{3}+\sqrt{6})=0$, then the smallest possible value of $n$ is

  • [KVPY 2009]