If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are
$-2, 2, -4$
$-2, 2, 4$
$3, 2, -2$
$4, 4, 3$
The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is
The number of positive integers $x$ satisfying the equation $\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}=\frac{13}{2}$ is.
If the equation $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ has $k$ real roots, then $k$ is equal to -
The product of the roots of the equation $9 x^{2}-18|x|+5=0,$ is
Let $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ and $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$
If $8 x^{2}+b x+c=0$ is a quadratic equation whose roots are $\alpha^{1 / 5}$ and $\beta^{1 / 5}$, then the value of $c-b$ is equal to: